
Bioacoustics
The International Journal of Animal Sound and its Recording, 2008, Vol. 18, pp. 213–226
© 2008 AB Academic Publishers

EQUIPMENT REVIEW
SEEWAVE, A FREE MODULAR TOOL FOR SOUND
ANALYSIS AND SYNTHESIS

JEROME SUEUR1*, THIERRY AUBIN2 AND CAROLINE SIMONIS3

1Muséum National d’Histoire Naturelle, Département Systématique et Évolution,
MNHN USM 601 & CNRS UMR 5202, CP 50, 45 rue Buffon, 75005 Paris, France
2Neurobiologie de l’Apprentissage, de la Mémoire et de la Communication, CNRS
UMR 8620, Bât. 446, Université Paris-Sud, 91405 Orsay Cedex, France
3Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la
Biodiversité, MNHN USM 301& CNRS UMR 7179, CP 55, 57 rue Buffon, 75005
Paris, France

ABSTRACT

We review Seewave, new software for analysing and synthesizing sounds. Seewave
is free and works on a wide variety of operating systems as an extension of the
R operating environment. Its current 67 functions allow the user to achieve time,
amplitude and frequency analyses, to estimate quantitative differences between sounds,
and to generate new sounds for playback experiments. Thanks to its implementation
in the R environment, Seewave is fully modular. All functions can be combined for
complex data acquisition and graphical output, they can be part of important scripts
for batch processing and they can be modified ad libitum. New functions can also be
written, making Seewave a truly open-source tool.

INTRODUCTION

An important part of research in bioacoustics relies on the use of
software dedicated to sound description and synthesis. This software
should ideally combine (1) fast and automatic data acquisition,
(2) direct statistical analysis of these data on the time, amplitude
and frequency domains and (3) visualization of sounds through high-
resolution graphics. In addition, these tools should be free, compatible
with the main operating systems, and open source, thus allowing the
user to modify or add new functions ad libitum. All these requirements
are often difficult to combine in a single free device. R is a free
software environment for data manipulation, calculation, statistical
computing and graphic display. It also achieves a wide variety of tasks
thanks to around 1,300 libraries or extensions (R Development Core
*Email: sueur@mnhn.fr

214

Team 2004). Working on a wide variety of platforms, R is a universal
system that facilitates data exchanges and is commonly used in all
biology fields. R seems therefore to be an excellent candidate for the
development of a free and modular bioacoustics tool. We here report
the main features of an R library we have named Seewave, which
allows sound description and sound generation.

IMPLEMENTATION AND AVAILABILITY

Seewave is an extension of R that is available on UNIX platforms and
similar systems (including FreeBSD, Linux), Windows and MacOS. It
comes with its own LaTeX-like documentation format, which is used
to supply comprehensive documentation, both on-line, in a number of
formats, and in hardcopy. Each function is illustrated by numerous
examples. The program is free and available from the official R
package archive at http://cran.r-project.org/src/contrib/Descriptions/
seewave.html. Seewave is licensed under the GNU General Public
License.

RUNNING PRINCIPLE

Seewave is a command-line driven library devoted to sound analysis
and synthesis (Figure 1). Sounds can be imported as ASCII or WAV
files thanks to the sound package (Heymann 2007). Each task is
achieved by calling a function to which different options, or arguments,
can be specified. These options, which have default values, refer to
analysis and graphical parameters. For instance, a spectrogram can
be simply obtained with the following command:

spectro(mysound)

By adding other arguments, this can be changed to:

spectro(mysound, wn = “Blackman”, wl = 1024, ovlp = 75,
palette = heat.colors)

where the Fourier window is now a Blackman window (wn) of length
1024 points (wl), there is a 75% overlap between successive windows
(ovlp) and the colour palette of the spectrogram (palette) follows a
heat colour scale (from light yellow to dark red).

There are several advantages to using such a command-line
driven system rather than a classical GUI interface. Seewave and all R
functions, including basic statistics functions, can be combined for fast
process. In particular, all amplitude, temporal or frequency data can

215

Fi
gu

re
 1

.
Sc

re
en

sh
ot

 o
f

a
Se

ew
av

e
se

ss
io

n
w

ith
 t

he
 c

om
m

an
d-

lin
e

w
in

do
w

,
th

e
ht

m
l

he
lp

 w
in

do
w

,
an

d
th

re
e

gr
ap

hi
c

w
in

do
w

s
op

en
ed

 (
fu

nc
tio

ns
 s

pe
ct

ro
,

m
ea

ns
pe

c
an

d
os

ci
llo

).
Th

e
so

un
d

is
 f

ro
m

 a
 T

re
e

C
ri

ck
et

 O
ec

an
th

us
 p

el
lu

ce
ns

st

ri
du

la
tio

n.
 M

ai
n

an
al

ys
is

 p
ar

am
et

er
s:

 s
am

pl
in

g
fr

eq
ue

nc
y

=
11

.0
25

 k
H

z,
 F

FT
 w

in
do

w
 l

en
gt

h
=

51
2

po
in

ts
, F

FT
 w

in
do

w

ze
ro

 p
ad

di
ng

 =
 1

6
po

in
ts

, F
FT

 w
in

do
w

 o
ve

rl
ap

 =
 9

5
%

. S
ee

 t
he

 A
pp

en
di

x
fo

r
co

m
m

an
d-

lin
e

de
ta

ils
.

216

TABLE 1

Main functions of Seewave (version 1.4.8, 2008-04-14).

NAME DESCRIPTION

Editing
addsilw Add or insert a silence section
cutw Cut a sound section
deletew Delete a sound section
mutew Replace a sound section by silence
pastew Paste a sound section
resamp Resample
repw Repeat a sound section
revw Time reverse
rmoffset Remove the offset
zapsilw Remove silence sections
Time/Amplitude domain
ama Amplitude modulation analysis
corenv Cross-correlation between two amplitude envelopes
diffenv Difference between two amplitude envelopes
env Amplitude envelope display
oscillo Oscillogram display
th Temporal entropy
timer Automatic time measurements
Frequency domain
autoc Short-term autocorrelation to extract fundamental frequency
ccoh Continuous coherence function between two sounds
ceps Cepstrum or real cepstrum
cepstro Cesptrogram
coh Coherence between two sounds
corspec Cross-correlation between two frequency spectra
covspectro Covariance between two spectrograms
csh Continuous spectral entropy
dfreq Dominant frequency
diffspec Difference between two frequency spectra
dynspec Dynamic sliding spectrum
fund Fundamental frequency track by cepstral analysis
ifreq Instantaneous frequency through Hilbert transform
meanspec Mean frequency spectrum
Q Resonance quality factor of a frequency spectrum
sh Spectral entropy
simspec Similarity between two frequency spectra
spec Frequency spectrum
specprop Main statistical properties of a frequency spectrum
spectro 2D-spectrogram
spectro3D 3D-spectrogram
zc Instantaneous frequency by zero-crossing
Synthesis and signal modification
afilter Amplitude filter
echo Echo generator
fadew Fade in and fade out
ffilter Frequency filter
fir Finite Impulse Response filter
lfs Linear Frequency Shift
noise Noise synthesis
pulse Rectangle pulse synthesis
rman Remove amplitude modulations
setenv Set the envelope of a time wave to another wave
synth Sound synthesis

217

be directly included in any statistical analysis, or any other biological
analysis. For instance, the quartiles, mean, median, minimum, and
maximum durations of signal periods can be automatically obtained
and stored in a new object with a single command-line:

results.time<-summary(timer(mysound, threshold = 5,
plot = FALSE)$s)

Similarly 15 statistical descriptive parameters can be extracted from
a frequency spectrum by simply calling:

results.frequency<-specprop(myspectrum)

Short scripts including loops or new functions can be quickly written
and used for batch processing. The history of the commands can
easily be saved, shared and called back for another session or for
other sound analyses. Functions supplied with Seewave are open
and can be modified by the user for his own needs. The user can
then write new functions based on the available functions or create
new functions. All these specifications ensure a full modularity of the
software and a completely open source project.

FUNCTIONS

At present, Seewave (version 1.4.8, as of 2008-04-14) includes 61
functions. The main functions are summarised in Table 1. New
functions and improvements are regularly added. The package also
includes six sounds for illustrative purposes. Sound can be edited as
oscillograms or amplitude envelopes in single or in multiple windows.
An option can be set to move along the signal using a time slider.
One function allows the automatic measurement of signal and silence
durations in a sample by setting an amplitude threshold.

In the frequency domain, several functions based on the Fourier
transform give information about spectral content. A frequency
spectrum can be obtained for the whole sample, or at any location
along it, by specifying a window size. The frequency content can also
be dynamically tracked along the signal using a sliding window. A
mean frequency spectrum can be computed with any desired window
length and overlap. In particular, window length can be set to
any even value (not only power of 2 values). Such spectra can be
plotted in absolute or dB amplitude and spectrum amplitude peaks
can be returned. For a given signal, the variations of the dominant,
fundamental or instantaneous frequency according to time can also be
plotted. The fundamental frequency of a harmonic series is detected
by autocorrelation or cepstral methods, while the instantaneous

218

frequency is obtained by the zero-crossing method and Hilbert
transform. 2D and 3D spectrograms can be obtained through sliding
short-term Fourier transform calculations. For both representations,
in addition to window analysis length and overlap of successive
windows, zero-padding options allow the user to improve graphical
representation and limit the uncertainty principle. Spectrograms can
be viewed by applying to the amplitude any colour or grey palettes.
Temporal and frequency similarity of two sounds can be assessed
through different methods: cross-correlations, coherence, entropy or
surface computation.

Another function of Seewave is dedicated to sound synthesis to
design waves with any sinusoidal amplitude modulations and linear
and/or sinusoidal frequency modulations. Any mathematical operations
between different sounds can be achieved and complex sounds with or
without harmonic structure can be obtained with simple additions of
sine waves. Artificial white noise can be added to test specific signal-
to-noise ratio in playback experiments. Slow amplitude modifications
can be set following triangular or sine-like shape. It is also possible
to apply the amplitude envelope of a sound to another one even if
the sounds differ in duration. Effects like fade-in, fade-out and echoes

Figure 2. Natural and synthetic stridulation of the Tree Cricket Oecanthus
pellucens. The synthesis is achieved with seven command-lines. See the
Appendix for command-line details.

219

can also be generated and signals can be modified through amplitude
filters, FIR filters and linear frequency shifts. An example showing
how to mimic a tree-cricket stridulation is given in Figure 2.

GRAPHICS

Seewave benefits from the R high-level graphical specifications. It is
then possible to fully modify the graphics, and to combine the graphical
displays of different functions in a single display with several layers
overlaid or in multi-framed output. Figure 3 shows the analysis of
domestic sheep Ovis aries bleat with three graphics overlaid whereas
Figure 4 illustrates a multi-framed graphical output with the analysis
of a Blue-footed Booby Sula nebouxii display call. Such graphics can

Figure 3. Graphical combination of analyses of a domestic sheep Ovis
aries bleat on a single plot. The figure is obtained with three functions: a
spectrogram (function spectro), a track of the fundamental frequency obtained
by cepstral analysis (function fund) and a track of the dominant frequency
obtained (function dfreq). Main analysis parameters: sampling frequency
= 8 kHz, FFT window length = 512 points, FFT window overlap = 50 %.
Recording by Frédéric Sebe. See the Appendix for command-line details.

220

Figure 4. Graphical combination of analyses in a multi-framed output.
Analysis of three display calls of Blue-footed Booby Sula nebouxii.
(a) spectrum (function spec) calculated at the vertical dotted line position in
(b), (b) spectrogram (function spectro), (c) amplitude envelope and automatic
temporal measurements (function timer), (d) oscillogram (function oscillo).
Main analysis parameters: sampling frequency = 44.1 kHz, FFT window
length = 1024 points, FFT window overlap = 85 %. See the Appendix for
command-line details.

be saved at a high resolution in several formats, including eps and
pdf. All these features allow the user to produce figures ready for
editing. In addition, by exploiting the real-time rendering device-
driver system (Adler & Murdoch 2007), it is possible to create short
movies of 3D sound representations for online or talk presentations.

LIMITATIONS

To use Seewave, it is first necessary to learn R-language basics. Even

221

if not very demanding, this can be off-putting to people not familiar
with command-line driven software. Seewave is also probably not the
best choice to edit sound. Users might prefer GUI software where it
is easier to explore the signal in the time domain. For now, Seewave
can neither identify nor automatically measure temporal sub-elements
such as those related to rhythm or tempo (syllables, pulses). Finally,
because R uses the RAM memory to run, computation is fast but
the RAM capacity can limit the size of the files to be analysed with
Seewave. For instance, the upper limit for a computer with 1024 MB
RAM is around 10 minutes sampled at 44.1 kHz.

DEVELOPMENT

Seewave is regularly updated, a new version being released about
every semester. To reduce its present limitations, the next versions
should include better temporal analysis, Wigner-Ville transform, LPC
(Linear Predictive Coding) analysis and other tools like algorithms
estimating source localization and tracking. As an open-source project,
development should also directly come from users whom are warmly
invited to develop and share their own functions.

ACKNOWLEDGMENTS

JS and CS are deeply indebted to Michel Baylac (Muséum national
d’Histoire naturelle, Paris, France) and Emmanuel Paradis (Institut
de Recherche pour le Développement, Montpellier, France) for their
enthusiastic R lectures. We would also like to thank Martin Maechler
who wrote one function argument (ETH Zurich, Switzerland). We
thank Frédéric Sebe (INRA, Tours, France) for the use of his sheep
bleat recording, James FC Windmill (University of Bristol, UK) for
his useful corrections on the manuscript, and two anonymous referees
for their helpful comments.

REFERENCES

Adler, D. & Murdoch, D. (2007). rgl: 3D visualization device system (OpenGL). R
package version 0.76. http://rgl.neoscientists.org

Heymann, M. (2007). sound: a sound interface for R. R package version 1.1. http://
www.MatthiasHeymann.de

R Development Core Team (2008). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.
R-project.org

Received 19 November 2007, revised 28 February 2008 and accepted 12 March 2008.

222

APPENDIX

R scripts used to generate the figures. Comments are preceded by a
sharp (#) symbol

Figure 1

call the song of Oecanthus pellucens coming attached to Seewave

data(pellucens)

cut a section and store it in a new object

pellu<-cutw(pellucens,f=11025,from=2)

generate a spectrogram with a Fourier window of 512 points length,
95% overlap, and 16 points zero-padding

a grey level palette is applied and an oscillographic display is
requested

spectro(pellu, f=11025, wl=512, ovlp=95, zp=16, palette=rev.
gray.colors.1, osc=TRUE)

open a second graphic window and generate a mean spectrum with a
Fourier window of length 1024 points

x11(); meanspec(pellu, f=11025, wl=1024, dB=TRUE)

open a third window and display an oscillograms of a section

x11(); oscillo(pellu, f=11025, from=0.42, to=0.45)

open the html help for the function meanspec

?meanspec

Figure 2

call the song of Oecanthus pellucens coming attached to Seewave

data(pellucens)

223

store in a new object the sampling frequency to be repeatedly used

f<-11025

cut a section and store it in a new object

natural<-cutw(pellucens, f=f, from=2.15, to=3.15)

synthesis of a 2300 Hz chirp with a -315 Hz FM, a duration of 0.03 s
and a sine-like shape amplitude envelope

s1<-synth(d=0.03, f=f, cf=2300, fm=c(0,0,-315), shape=”sine”)

similar synthesis than s1 but at 2300*1.9 = 4370 Hz

s2<-synth(d=0.03, f=f, cf=2300*1.9, fm=c(0,0,-315),
shape=”sine”)

addition of s1 and 0.12*s2 to follow relative amplitude between the
frequency bands; amplitude normalisation

s3<-s1+(0.12*s2); s4<-s3/max(s3)

add a short silence period and repetition of the chirp

s5<-addsilw(s4, f=f, d=0.015); s6<-repw(s5, f=f, times=20)

add a fade in effect with cosine-like shape

s7<-fadew(s6, f=f, din=0.25, shape=”cos”)

paste natural and synthetic sounds in a new object

result1<-pastew(s7,pellu,f=f)

insert a 0.25 s silence period between natural and synthetic sounds

result2<-addsilw(result1, f=f, at=1, d=0.25)

display a spectrogram with labels

spectro(result2, f=f, wl=256, ovlp=95, osc=TRUE, palette=rev.
gray.colors.1)
mtext(c(“natural”,”synthetic”), side=3, at=c(0.2,0.7), line=1.5,
font=3)

224

Figure 3

call a bleat of Ovis aries coming attached to Seewave

data(sheep)

display a spectrogram

spectro(sheep, f=8000, ovlp=75, zp=16, scale=FALSE,
palette=rev.gray.colors.2, collevels=seq(-45,0,1))

create a first layer

par(new=TRUE)

dominant frequency track is computed and is overlaid onto the
spectrogram

dfreq(sheep, f=8000, wl=1024, ovlp=85, type=”p”, pch=24,
bg=”white”, ann=FALSE)

create a second layer

par(new=TRUE)

compute fundamental frequency track and overlay it onto the
spectrogram

fund(sheep, f=8000, wl=128, fmax=200, threshold=2, type=”p”,
pch=21, bg=”white”, ann=FALSE)

add the symbol legend

legend(1,3.9, c(“Dominant frequency”,”Fundamental frequency”),
pch=c(24,21), bty=0)

Figure 4

import a wav file of Sula nebouxii display calls and store it in a object.
The file can be sent upon request

sula<-loadSample(“sula.wav”)

225

divide the graphic windows in sub-frames and change the margins

layout(matrix(c(1,0,2,5,3,0,4,0), nc=2, byrow=T), widths=c(9,
1), heights=c(2,2.5,1.5,1.5)); par(mar=c(4.5,4,2,1),
oma=c(0,3,0,0), cex.lab=1.5)

display a spectrum at 0.85 s of length 1024 points

spec(sula, wl=1024, at=0.85, font.lab=2)

change the margins

par(mar=c(0,4,1,1))

display a spectrogram
spectro(sula, wl=1024, ovlp=85, scale=F, colgrid=”grey”,
collevels=seq(-40,0,1), zp=6, plot.title=title(main = “”,
ylab=”Frequency (kHz)”, font.lab=2), axisX=F, palette=rev.
gray.colors.2)

add a vertical dotted line onto the spectrogram to show where the
spectrum has been computed

abline(v=0.85, lty=2)

change the margins

par(mar=c(0,4,0,1))

compute automatically the duration of the calls and the inter-call
silences

timer(sula, f=44100, threshold=1, smooth=170, xlab=””,
xaxs=”i”, xaxt=”n”, font.lab=2, colval=”black”)

change the margins

par(mar=c(5,4,0,1))

display an oscillogram

oscillo(sula, bty=”o”, fontlab=2)

change the margins

par(mar=c(0,0.5,3,4))

226

add the spectrogram scale

dBscale(collevels=seq(-40,0,1), side=4, textlab=”dB”,
cexlab=0.65, fontlab=2, palette=rev.gray.colors.2)

add the name of the sub-plots

mtext(c(“(a)”,”(b)”,”(c)”,”(d)”), side=2, font=2, line=0.5,
at=c(0.96,0.71,0.39,0.19), outer=TRUE, las=1, cex=1.1)

