MUSÉUM NATIONAL D'HISTOIRE NATURELLE

Breakpoint detection in biological and environmental sequences

Stéphane ROBIN

UMR 518 AgroParisTech / INRA robin @agroparistech.fr

SEMIN-R du MNHN | 08 Avril 2008

Joint work with

- E. Lebarbier, B. Thiam (UMR 518 AgroParisTech /INRA)
- F. Picard (CNRS, Lyon)

Outline

- 1. Simple segmentation problem: CGH array data
- 2. Breakpoint detection with covariates
- 3. Multiple segmentation

1 - Simple segmentation problem: CGH array data 1.1 - Chromosomal aberrations and CGH arrays

Microarray technology in its principle

Plotting the ratio along the chromosome

CGH profile. Because of the technical variability, the observed data look like this:

Interpretation of a CGH profile

1.2 - Model = What we have in mind

- At position t, there exists a 'true' log-ratio λ_t , which depends on the relative copy number.
- The value of the true log-ratio λ_t is affected by abrupt changes:

Position t_1 , t_2 , ... are called *breakpoints*. μ_k is the true log-ratio in segment I_k .

• The observed signal Y_t is noisy:

$$Y_t = \lambda_t + E_t.$$

Breakpoints detection aims at studying the spatial structure of the signal.

Statistical model

• The breakpoints define a partition of the data into K segments of size n_k :

$$I_k = \{t, t \in]t_{k-1}, t_k]\}.$$

• Suppose that those parameters are constant between two changes:

if position t is in segment I_k , $Y_t = \mu_k + E_t \sim \mathcal{N}(\mu_k, \sigma_{(k)}^2)$.

• The parameters of this model are:

$$T = (t_1, ..., t_{K-1}), \qquad \Theta = (\theta_1, ..., \theta_K), \quad \theta_k = (\mu_k, \sigma_{(k)}^2).$$

• The model can rewritten as a *regression model*:

$$\mathbf{Y} = \mathbf{T}\boldsymbol{\mu} + \mathbf{E}$$

where $\mathbf{T} = unknown \ n \times K$ segmentation matrix $(Y_{tk} = \mathbb{I}\{i \in I_k\})$, $\boldsymbol{\mu} =$ vector of the K segment means.

S. Robin: Breakpoint detection

Estimating the parameters

Log-Likelihood (with a constant variance σ^2):

$$2\mathcal{L}_{K}(T,\Theta) = 2\sum_{k=1}^{K} \log \phi(\{Y_{t}\}_{t\in I_{k}};\theta_{k}) = 2\sum_{k=1}^{K} \sum_{t\in I_{k}} \log \phi(Y_{t};\theta_{k})$$
$$= -n\log \sigma^{2} - \frac{1}{\sigma^{2}}\sum_{k=1}^{K} \sum_{t\in I_{k}} (Y_{t} - \mu_{k})^{2} + \operatorname{cst.}$$

- Because the data are supposed to be independent, the log-likelihood is a sum over all the segments (*additive contrast*).
- Because the data are supposed to be Gaussian, maximum likelihood estimation is equivalent to *least squares* fitting.
- When the segments are known, estimation is straightforward: $\hat{\mu}_k = \frac{1}{n_k} \sum_{t \in I_k} Y_t$.

How to find the breakpoints?

When K is known , we have to minimise

$$J_k(1,n) = \sum_{k=1}^K \sum_{t \in I_k} (Y_t - \hat{\mu}_k)^2.$$

• There are $\binom{n-1}{K-1}$ possible choices for the positions of the breakpoints $t_1, t_2, \ldots, t_{K-1}$:

 \Rightarrow Impossible to explore for large n and K

- $\sum_{t \in I_k} (Y_t \hat{\mu}_k)^2$ can be viewed as the 'cost' of segment I_k , i.e. the cost of putting data $Y_{t_{k-1}+1}$ to $Y_{t_{k+1}}$ in a single segment.
- The optimisation problem is actually a shortest path problem that can be solved thanks to dynamic programming.

Dynamic programming. Based on Bellmann's optimality principle:

Sub-paths of the optimal path are themselves optimal.

Initialisation: For $0 \le i < j \le n$:

$$J_1(i,j) = \sum_{t=i+1}^{j} (Y_t - \hat{\mu})^2.$$

Step k: For $2 \le k \le K$:

$$J_k(i,j) = \min_{i \le h \le j} \left[J_{k-1}(1,h) + J_1(h+1,j) \right].$$

 J_k is called the cost matrix.

The global optimum is given by $J_k(1,n)$.

Example with ${\boldsymbol R}$

```
Cost matrix:
lmin = 2
C = matrix(Inf, n, n)
for (i in (1:(n-lmin)))
    {
    for (j in ((i+lmin):n))
    {
      reg = lm(y[i:j] ~ x[i:j])
      C[i, j] = sum(reg$residuals^2)
    }
}
```

Breakpoints:

\$t.est

[,1]	[,2]	[,3]	[,4]	[,5]
40	0	0	0	0
10	40	0	0	0
16	30	40	0	0
10	16	30	40	0
10	16	24	30	40
	[,1] 40 10 16 10 10	<pre>[,1] [,2] 40 0 10 40 16 30 10 16 10 16 10 16</pre>	[,1] [,2] [,3] 40 0 0 10 40 0 16 30 40 10 16 30 10 16 24	$\begin{bmatrix} ,1 \end{bmatrix} \begin{bmatrix} ,2 \end{bmatrix} \begin{bmatrix} ,3 \end{bmatrix} \begin{bmatrix} ,4 \end{bmatrix} \\ 40 & 0 & 0 \\ 10 & 40 & 0 \\ 16 & 30 & 40 & 0 \\ 10 & 16 & 30 & 40 \\ 10 & 16 & 24 & 30 \end{bmatrix}$

Contrasts:

\$J.est

[1] 23.8693554 9.8660559 2.6290695 1.5546431 1.2213389

One last problem: the selection of \boldsymbol{K}

- The contrast J_K necessarily decreases when the model becomes more complex.
- The penalty function measures this complexity: pen(K) = K+1with constant variance, 2K with heterogeneous variance.
- We look for the minimum of

 $J_k + \beta pen(K)$

where β is adaptively estimated (*Lavielle*(2003)).

1.3 - Example of segmentation on array CGH data

Are the variances σ_k^2 homogeneous? BT474 cell line, chromosome 9:

Adaptive choice of the number of segments. BT474 cell line, chromosome 1:

Homogeneous variances result in smaller segments. Picard & al, 05

Comparative study

Lai & al. (Bioinformatics, 05). On both synthetic and real data (GBM brain tumor data), the methods performs well.

2 - Breakpoint detection with covariates 2.1 - Harvest data

Data = Harvest dates and temperatures in Ouges (Burgundy) since 1882. *Chuine*, *04*

A breakpoint is detected in *both series in 1986*.

Is the 1986 breakpoint observed in harvest data caused by the corresponding rupture in the temperatures,

Harvest time

Mean summer temperature

2.2 - Regression / segmentation model

Denote Y_t = harvest date at year t, x_t = temperature at year t, I_k = k-th segment $(I_k = \{t, t \in]t_{k-1}, t_k]\}).$

The model is, for $t \in I_k$,

Matrix form. The model can be written as

 $\mathbf{Y} + \mathbf{X} \boldsymbol{\theta} + \mathbf{T} \boldsymbol{\mu} + \mathbf{E}$

where \mathbf{X} = known matrix of regressors (vector of temperatures),

 θ = vector of regression coefficients ($\theta = [b]$),

$$\mathbf{T} = unknown$$
 segmentation matrix $(Y_{tk} = \mathbb{I}\{i \in I_k\})$,

 μ = vector of segment means.

S. Robin: Breakpoint detection

Heuristic estimation procedure

Least squares criterion. We look for

$$\min_{b,\{I_k\},\{\mu_k\}} \sum_k \sum_{t \in I_k} (Y_t - bx_t - \mu_k)^2,$$

which is *not additive*, since *b* is common to all segments.

Iterative heuristic. Set $F_t^0 = Y_t$ and iterate until convergence of b^h , $\{I_k^h\}$, $\{\mu_k^h\}$:

1. Segmentation step:

$$\min_{\{I_k\},\{\mu_k\}} \sum_k \sum_{t \in I_k} (F_t^h - \mu_k)^2, \quad \longrightarrow \quad \text{for } t \in i_k^{h+1} : \quad G_t^{h+1} = Y_t - \mu_k^{h+1};$$

2. Regression step:

$$\min_{b} \sum_{k} \sum_{t \in I_k} (G_t^{h+1} - bx_t)^2, \qquad \longrightarrow \qquad F_t^{h+1} = Y_t - b^{h+1}x_t.$$

S. Robin: Breakpoint detection

Results When accounting for temperature, the breakpoint at t = 1986 vanishes.

3 - Multiple segmentation3.1 - Examples

Breakpoints in temperature series

Consider the temperatures series $\{Y_{it}\}$ in several French cities (i = 1..m), we look for *common breakpoints* in the climate slope b accounting for a (random) *city effect* U_i :

$$t \in I_k \quad \Rightarrow \quad Y_{it} = \mu + U_i + b_k t + E_{it}$$

where $\{U_i\}$ are i.i.d. $\mathcal{N}(0, \gamma^2)$ and $\{E_{it}\}$ are i.i.d. $\mathcal{N}(0, \sigma^2)$.

This model induces a correlation between all temperatures collected in the same city:

$$\mathbb{C}\mathrm{ov}(Y_{it}, Y_{i,t'}) = \gamma^2 \qquad \Rightarrow \qquad \mathbb{C}\mathrm{orr}(Y_{it}, Y_{i,t'}) = \frac{\gamma^2}{\gamma^2 + \sigma^2}.$$

Chromosomal aberrations in a set of patients

Consider the CGH profiles $\{Y_{it}\}$ of a set of patients (i = 1..m), we look for *individual breakpoints* accounting for a (random) *probe effect* U_t :

$$t \in I_{ik} \quad \Rightarrow \quad Y_{it} = \mu_{ik} + U_t + E_{it}.$$

 U_t accounts for different probe affinities that *may alter all the profiles* at the same position.

The random term induces a correlation between all these measurements.

3.2 - Mixed linear model with breakpoints

The general formulation of the model is

 $\mathbf{Y} = \mathbf{T}\boldsymbol{\mu} + \mathbf{Z}\mathbf{U} + \mathbf{E}$

where

Y: profiles,

 \mathbf{T} segments (*unknown* \rightarrow *to estimate*),

 μ mean signal in each segment (*unknown* \rightarrow *to estimate*),

- ${\bf Z}\,$ design matrix of the random effect,
- \mathbf{U} vector of random effect (*unobserved*): $\mathbf{U} \sim \mathcal{N}(\mathbf{0}, \mathbf{G})$ (\mathbf{G} *unknown* \rightarrow *to estimate*),

E residual (unobserved): $\mathbf{U} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$ (**R** diagonal, unknown \rightarrow to estimate).

Estimation of the parameters

Direct maximisation of the likelihood. The marginal distribution of ${\bf Y}$ is

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{X} oldsymbol{ heta} + \mathbf{T} oldsymbol{\mu}, \mathbf{V}), \qquad ext{where } \mathbf{V} = \mathbf{Z} \mathbf{G} \mathbf{Z}' + \mathbf{R}.$$

Because, V is not diagonal, the direct maximisation of the observed log-likelihood $\mathcal{L}(Y)$ leads to the minimisation of a non additive contrast.

Dynamic programming *can not be used* to estimate T and μ

E-M strategy. Its conditional distribution given ${\bf U}$ is

 $(\mathbf{Y} \mid \mathbf{U}) \sim \mathcal{N}(\mathbf{X}\boldsymbol{\theta} + \mathbf{T}\boldsymbol{\mu} + \mathbf{Z}\mathbf{U}, \mathbf{R}).$

In the E-M algorithm (*Foulley, lecture notes*), the unobserved effect U is predicted, so we have to maximise $\mathcal{L}(\mathbf{Y} \mid \mathbf{U})$, which involves an additive contrast since R is diagonal. *Dynamic programming can be used to estimate* T and μ

A DP-EM algorithm

E step. Calculate the conditional moments of the random effect given the data:

 $\widehat{\mathbb{E}}(\mathbf{U}|\mathbf{Y}), \qquad \widehat{\mathbb{V}}(\mathbf{U}|\mathbf{Y}).$

M step. Denoting $\widehat{\mathbf{U}} = \widehat{\mathbb{E}}(\mathbf{U}|\mathbf{Y})$, perform the segmentation as follows:

$$\widehat{\mathbf{T}\boldsymbol{\mu}} = rg\min_{\mathbf{T}\boldsymbol{\mu}} \|\mathbf{Y} - \mathbf{T}\boldsymbol{\mu} - \mathbf{Z}\widehat{\mathbf{U}}\|^2.$$

A *two-stage dynamic programming* is required to achieve this step for numerous patients. *Picard et al.*

Segclust package.

http://cran.r-project.org/web/packages/segclust/index.html

3.3 - Applications

Breakpoints in temperature series

Data. For several locations (m = 25), we measure the minimal daily temperature, averaged for each year from 1957 to 2004. (Source: Meteo France).

Model. $t \in I_k$ $\Rightarrow Y_{it} = \mu + U_i + b_k t + E_{it}.$

Estimates.

 $\widehat{b}_1 = 1.8 \ 10^{-3},$ $\widehat{b}_2 = 2.5 \ 10^{-2},$ $\widehat{\gamma} = 2.0, \quad \widehat{\sigma} = 0.51.$

CGH profile: Bladder cancer data

Global analysis (Inst. Curie, F. Radvanyi)

We find a *large positive random* effect U_t has at position 87.

- \rightarrow Poor probe affinity?
- \rightarrow Wrong annotation?
- \rightarrow Polymorphism?

The mean profile of the whole set of patients can be corrected from the probe effect:

(···) mean of raw profiles,(○) mean of corrected profiles

Individual profiles. The random effect has an influence on the segmentation.

- Breakpoints around position 86 are detected in individual profiles when analysed independently (-).
- They vanish after correction of the probe effect vanish (-).

