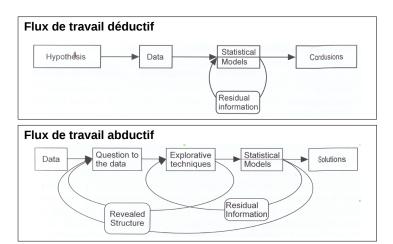
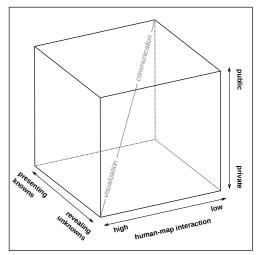

Retour sur les aspects spatiaux du manuel ElementR

Commenges H., Cura R., Mathian H.

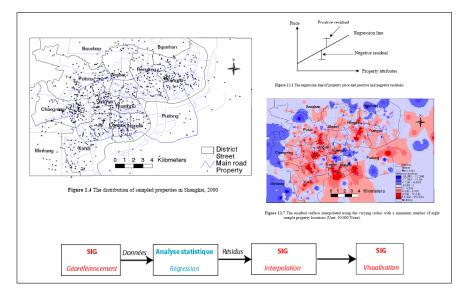

UMR Géographie-cités

24 mai 2013

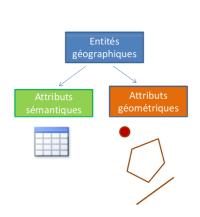
Retour sur la construction du manuel ElementR



L'analyse spatiale : une démarche exploratoire d'analyse des données géographiques



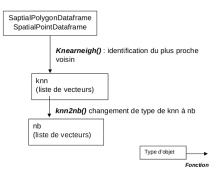
La cartographie comme élément de l'analyse exploratoire


Cube de McEachren (1994)

Exemple d'un flux de travail exploratoire

Entités spatiales

Package sp dans lequel sont définis les objets spatiaux; base de tous les packages traitant du spatial.


Objet spatiaux:

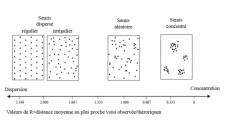
- SpatialDataframe
- SpatialPointDataframe
- SpatialPolygonDataframe
- SpatialLineDataframe

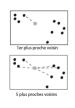
Entités spatiales

Relations entre les entités
- structurelle, liées à leurs
localisations: contiguïté, distance
(euclidienne, sur réseau, temps..)
- fonctionnelles: flux, échanges
entre les entités

Présentation de méthodes d'analyse spatiale

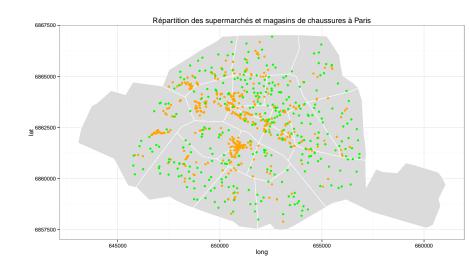
- 1. Introduction
- 2. Prise en main et manipulation des données
- 3. Programmation
- 4. Analyse univariée
- 5. Analyses bivariées
- 6. Analyses factorielles
- 7. Méthodes de classification
- 8. Analyse de graphes
- 9. Cartographie
- 10. Initiation aux statistiques spatiales

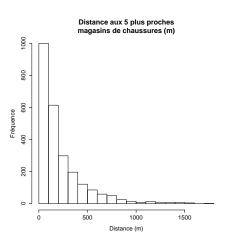

Analyse d'un semis de points

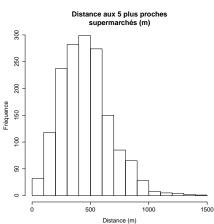

- ▶ Données: Ensemble de points localisés correspondant à des réalisations d'un phénomène et non à des échantillonnage de points d'un phénomène continu
 - Localisation des impacts d'un volcan
 - Localisation et type d'accident: piéton adulte, enfant, vélo . . .
 - ► Localisation des collèges et % de réussite au brevet
- Approches globales: caractérisation globale du semis
 - Le semis peut-il être assimilé à un semis aléatoire ?
 - Comparaison de 2 semis.
- Approches locales
 - recherche des structures locales, des agrégats : analyse des espacements entre les points et leurs voisins (identification des zones de concentrations, Hotspots, clusters, . . .)

Analyse d'un semis de points

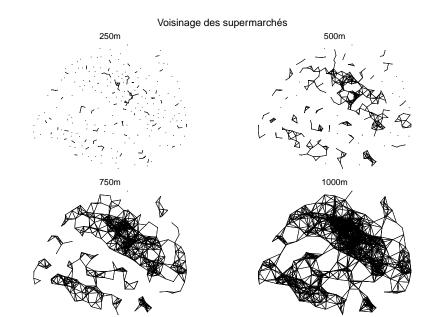
· Approche globale


Approche locale

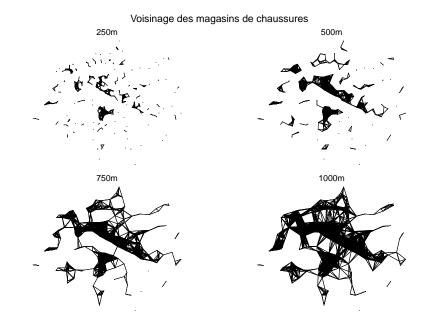


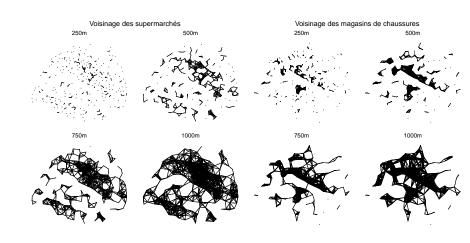


Analyse d'un semis de points : exemple de la localisation de commerces



Analyse d'un semis de points : distribution des distances aux 5 plus proches voisins




Analyse d'un semis de points : recherche d'agrégats

Analyse d'un semis de points : recherche d'agrégats

Analyse d'un semis de points : recherche d'agrégats

Analyse de l'autocorrélation spatiale

- Données : Ensemble de zones caractérisées par une mesure d'un phénomène
 - Taux de pénétration des cas de grippe
 - % d'abres tombés après la tempête par parcelle forestière
 - % de réussite au brevet au niveau communal

et définition d'une relation de voisinage entre les zones (contiguïté, distance entre centres . . .)

- ► Approches globales : caractérisation globale de l'organisation spatiale (Indice de Geary, de Moran)
- Approches locales : Identification des structures locales, des agrégats
 - identification des zones de concentrations, Hotspots, clusters, . . .
 (LISA)

Analyse de l'autocorrélation spatiale

Approche Globale

Autocorrélation L'apparition en un lieu dépend de ce qui se

passe dans les lieux voisins

Positive 2 lieux proches se 2 lieux éloignés

Négative 2 lieux proches se ressemblent plus que ressemblent moins que 2 lieux éloignés

Absence d'autocorrélation

Indice de Moran

$$I = \frac{N \sum_{i} \sum_{j} W_{i,j} (X_i - \overline{X}) (X_j - \overline{X})}{(\sum_{i} \sum_{j} W_{i,j}) \sum_{i} (X_i - \overline{X})^2}$$

Approches locales

Local indicator of spatial association (LISA)

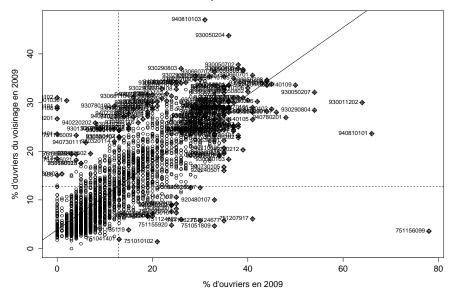
$$I_i = z_i \sum_j w_{ij} z_j$$

Analyse de l'autocorrélation spatiale : mesures globales

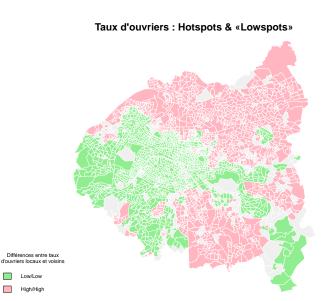
% d'ouvriers en 1999 par IRIS

% d'ouvriers en 2007 par IRIS


```
moran.test(x = irisParis$P_OUV_1999, listw = nb2listw(mIRISPARIS))


## Moran I statistic standard deviate = 29.8797, p-value < 2.2e-16
## Moran I statistic Expectation Variance
## 0.5039836 -0.0010142 0.0002856

moran.test(x = irisParis$P_OUV_2007, listw = nb2listw(mIRISPARIS))


## Moran I statistic standard deviate = 27.0988, p-value < 2.2e-16
## Moran I statistic Expectation Variance
## 0.4574299 -0.0010142 0.0002862</pre>
```

Analyse de l'autocorrélation spatiale : mesures locales

Autocorrélations spatiales selon le taux d'ouvriers

Analyse de l'autocorrélation spatiale : mesures locales

Low/Low

Merci de votre attention. http://elementr.parisgeo.cnrs.fr