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1 - Simple segmentation problem: CGH array data

1.1 - Chromosomal aberrations and CGH arrays

CGH = Comparative Genomic Hybridization: method for the comparative measurement
of relative DNA copy numbers between two samples (normal/disease, test/reference).
— Application of the microarray technology to CGH (resolution ~ 100kb).

Genome

Genome representation

Code in public data bases nown coordinates on the

genome
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Microarray technology in its principle

prepare Microarray
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Plotting the ratio along the chromosome
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CGH profile. Because of the technical variability, the observed data look like this:
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Interpretation of a CGH profile

Amplified segments
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1.2 - Model = What we have in mind

e At position t, there exists a 'true’ log-ratio \;, which depends on the relative copy
number.

e The value of the true log-ratio \; is affected by abrupt changes:

t t, A=K, t, t, - t,
ju— j— 4
)\t lJ'1 )\t lJ'3 t

Chromosgme

I1 I2 I3 I4

Position t1, to, .. are called breakpoints. i is the true log-ratio in segment ;..

e The observed signal Y; is noisy:
}/t — )\t + Et.

Breakpoints detection aims at studying the spatial structure of the signal.
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Statistical model

e The breakpoints define a partition of the data into K segments of size ny:
I, = {t,t €tp_1,ty]}.
e Suppose that those parameters are constant between two changes:
if position t is in segment I, Y = pr + By ~ N (g, O'(Qk)).
e [he parameters of this model are:
T = (t1,...,tx_1), ©=(0,...,0g), 0= (,uk,a%k)).

e The model can rewritten as a regression model:

Y = Tu+E
where T = unknown n x K segmentation matrix (Y, = I{i € I}),
i = vector of the K segment means.
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Estimating the parameters

Log-Likelihood (with a constant variance 02):

K K
2Lk (T,0) = 2) logd({Vitter,i6k) = 2) > logp(Vy;by)
k=1

k=1tel,

— —nloga — ZZY} (i) % 4 cst.

k=1tel}

e Because the data are supposed to be independent, the log-likelihood is a sum over all
the segments (additive contrast).

e Because the data are supposed to be Gaussian, maximum likelihood estimation is
equivalent to least squares fitting.

e When the segments are known, estimation is straightforward: 1, = nik Ztelk Y;
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How to find the breakpoints?

When K is known , we have to minimise

T(ln) =SS (Y - )’

k=1 tEIk

n—1
K -1
t17t27°"7tK—1:

e There are ( ) possible choices for the positions of the breakpoints

= Impossible to explore for large n and K

o Ztelk(Yt — i )* can be viewed as the 'cost’ of segment I, i.e. the cost of putting
data Y3, 41 to Y3, in a single segment.

e [he optimisation problem is actually a shortest path problem that can be solved thanks
to dynamic programming.
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Dynamic programming. Based on Bellmann's optimality principle:

Sub-paths of the optimal path are themselves optimal.

Initialisation: For 0 < <75 < n:
J

L) =) (Y-

t=1+1

Step k: For 2 < k < K:

Ji(i,7) = min [Jp_1(1,h) + J1(h+1,75)].

i<h<j

Ji. 1s called the cost matrix.

The global optimum is given by Ji(1,n).
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Example with R

Cost matrix:

Imin = 2

C = matrix(Inf, n, n)
for (i in (1:(n-1lmin)))

Eor (j in ((i+lmin):n))
{ reg = Im(y[i:j] ~ x[i:j1)
C[i, jl = sum(reg$residuals~2)
, by
Contrasts:
$J.est

[1] 23.8693554 9.8660559 2.6290695
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Breakpoints:

[,11 [,2]1 [,3] [,4] [,5]

$t.est
[1,] 40
[2,] 10
[3,] 16
[4,] 10
[5,] 10

1.5546431

0 0
40 0
30 40
16 30
16 24

1.2213389

0
0
0
40
30

0
0
0
0
40
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One last problem: the selection of K

e The contrast Jg necessarily

decreases when the model 05
becomes more complex.

e The penalty function measures
this complexity: pen(K) = K+1
with constant variance, 2K with
heterogeneous variance.

-15F

-25F

e We look for the minimum of

J. + Bpen(K)

_35 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40
pen(K)

where (3 is adaptively estimated
(Lavielle(2003)).
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1.3 - Example of segmentation on array CGH data

Are the variances o7 homogeneous? BT474 cell line, chromosome 9:

Homogeneous variances
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Adaptive choice of the number of segments. BT474 cell line, chromosome 1:

Homogeneous variances Heterogeneous variances

K = 10 segments K = 2 segments
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Homogeneous variances result in smaller segments. Picard & al, 05
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Comparative study

Lai & al. (Bioinformatics, 05). On both synthetic and real data (GBM brain tumor data),

the methods performs well.

CGHseg

quantreg

CLAC

CBS

HMM

wavelet

ChARM

ACE
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2 - Breakpoint detection with covariates

2.1 - Harvest data

dates
Ouges

Data = Harvest

and temperatures in
(Burgundy) since 1882.

A breakpoint is detected in both
series in 1986.

Is the 1986 breakpoint observed
in harvest data caused by the
corresponding rupture in the
temperatures,
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2.2 - Regression / segmentation model

Denote Y; = harvest date at year ¢,
ry = temperature at year t,
I, = k-th segment ([ = {t,t €|tx_1,tx]}).

The model is, for t € I,

Y,= bx -+ + B
t ULt ,. Mk | t
regression  segmentation

Matrix form. The model can be written as

Y +X0+Tu+ E
where X = known matrix of regressors (vector of temperatures),
@ = vector of regression coefficients (6 = [b]),
T = unknown segmentation matrix (Y, = I{i € I1.}),
i = vector of segment means.

S. Robin: Breakpoint detection
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Heuristic estimation procedure

| east squares criterion. We look for

min Y, — bxy — 2
b,{fk},{uk}zz( e bae = )

k tely

which is not additive, since b is common to all segments.
lterative heuristic. Set ) =Y; and iterate until convergence of b, {I}'}, {u?}:

1. Segmentation step:

Uit {bed teI

2. Regression step:

min Y Y (GFT —be)?, — FMT =Y -

k tely

S. Robin: Breakpoint detection 20



Results When accounting for temperature, the breakpoint at t = 1986 vanishes.

Segmentation
for harvest dates

K =4 (2, 67)

Segmentation
for temperatures

K =4 (27)

Segmentation /
regression  for
harvest dates

K =3 (17)
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3 - Multiple segmentation
3.1 - Examples

Breakpoints in temperature series

Consider the temperatures series {Y;;} in several French cities (i = 1..m), we look for
common breakpoints in the climate slope b accounting for a (random) city effect U;:

tely, = Yyi=p+U,+bt+ Ey
where {U,} are i.i.d. N(0,42) and {E;;} are i.i.d. N(0,0?).

This model induces a correlation between all temperatures collected in the same city:

,.YQ

_ A2 _
Cov(Yi, Yi,t’) =7 = CO”(Yit,Yz‘,t’) — 2+ 52
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Chromosomal aberrations in a set of patients

Consider the CGH profiles {Y;;} of a
set of patients (i = 1..m), we look for
individual breakpoints accounting for a
(random) probe effect U,

telix = Yi=p+ U+ Egy.
U; accounts for different probe affinities

that may alter all the profiles at the
same position.

The random term induces a correlation
between all these measurements.

S. Robin: Breakpoint detection
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3.2 - Mixed linear model with breakpoints

The general formulation of the model is
Y=Tu+72U +E

where

Y: profiles,

T segments (unknown — to estimate),

p mean signal in each segment (unknown — to estimate),

Z, design matrix of the random effect,

U vector of random effect (unobserved): U ~ N(0,G) (G unknown — to estimate),

E residual (unobserved): U ~ N(0,R) (R diagonal, unknown — to estimate).

S. Robin: Breakpoint detection
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Estimation of the parameters

Direct maximisation of the likelihood. The marginal distribution of Y is
Y ~N(X0+Tu,V), where V = ZGZ' + R.

Because, V is not diagonal, the direct maximisation of the observed log-likelihood L£(Y)
leads to the minimisation of a non additive contrast.
Dynamic programming can not be used to estimate T and u

E-M strategy. Its conditional distribution given U is
(Y| U)~N(XO0+Tu+7ZU,R).

In the E-M algorithm (Foulley, lecture notes), the unobserved effect U is predicted, so
we have to maximise L(Y | U), which involves an additive contrast since R is diagonal.
Dynamic programming can be used to estimate T and
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A DP-EM algorithm

E step. Calculate the conditional moments of the random effect given the data:
E(U|Y), V(U[Y).
M step. Denoting U = IAE(U|Y) , perform the segmentation as follows:

Tp = in||Y — Tp — ZU|>
p argrggl\l p© |

A two-stage dynamic programming is required to achieve this step for numerous patients.
Picard et al.

Segclust package.

http://cran.r-project.org/web/packages/segclust/index.html
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3.3 - Applications

Breakpoints in temperature series

Data. For several locations (m =
25), we measure the minimal
daily temperature, averaged for
each year from 1957 to 2004.

(Source: Meteo France).

Model. t € I},
= Yy = p+ U; + bt + Eyy.

Estimates.
by = 1.8 1073,

by = 2.5 1072,
=20, &=0.51.

S. Robin: Breakpoint detection
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CGH profile: Bladder cancer data

Global analysis (Inst. Curie, F.
Radvanyi)

We find a large positive random
effect U; has at position 87.

— Poor probe affinity?
— Wrong annotation?
— Polymorphism?

The mean profile of the whole set
of patients can be corrected from
the probe effect:

(---) mean of raw profiles,

(o) mean of corrected profiles
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Individual profiles. The random
effect has an influence on the

segmentation. 0 2 1 60 80
e Breakpoints around position : !
86 are detected in individual ] ?
profiles when analysed o | o Beed]
independently (-). ol - | | | |
0 20 40 60 80
e They vanish after correction of .
the probe effect vanish (). L [
o somp | ||| menion ooy
T' [ I I [
0 20 40 60 80
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