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1 - Simple segmentation problem: CGH array data

1.1 - Chromosomal aberrations and CGH arrays

CGH = Comparative Genomic Hybridization: method for the comparative measurement
of relative DNA copy numbers between two samples (normal/disease, test/reference).

→ Application of the microarray technology to CGH (resolution ∼ 100kb).Chapter 1. De�nition of array-based Comparative Genomi
 Hybridization

Figure 1.3: S
hemati
 representation of array CGH 
on
eption.CGH has be
ome a standard method for 
ytogeneti
 studies, te
hni
al limitationsrestri
t its usefulness as a 
omprehensive s
reening tool: the 
ondensed and super-
oiled state of the target DNA in the 
hromosomes limits the resolution to 10Mbfor loss and 2Mb for ampli�
ation (Beheshti et al. (2002)). The resolution ofComparative Genomi
 Hybridizations has been greatly improved using mi
roar-ray te
hnology (Solinas-Toldo et al. (1997)).1.2 Appli
ation of mi
roarray te
hnology to 
om-parative genomi
 hybridizationThe di�eren
e between 
hromosome CGH and array-based CGH lies in the sup-port whi
h is used for hybridization. For 
hromosome CGH, this support is a
hromosome, whereas in CGH array experiments, the support is a slide. Sin
emore and more DNA 
lones have been mapped and sequen
ed, they are spottedon a slide (Figure 1.3). In parallel, genomi
 DNA is extra
ted from biologi
alsamples, ampli�ed and labelled with �uores
ent dyes, 
alled Cy3 and Cy5 (Fig-ure 1.4). This mixture of targets, is hybridized on the 
hip, and DNA sequen
es
an bind their 
omplementary template. Sin
e probes are uniquely lo
alized onthe slide, the quanti�
ation of the �uores
en
e signals on the 
hip will de�ne ameasurement of the abundan
e of thousands of genomi
 sequen
es in a 
ell in agiven 
ondition.Mi
roarray te
hnology is well-known and widely used to study gene expressionpro�les. CGH mi
roarrays use referen
e DNA that do not present any alteration,allowing an "absolute" quanti�
ation of genomi
 imbalan
es for the sample DNA.The appli
ation of mi
roarray te
hnology to CGH has improved the resolutionfrom megabases to 100kb. Pinkel et al. (1998) further re�ned this te
hnique andhave shown that CGH mi
roarrays 
an dete
t 
hromosomal aberrations of 40kb.14
S. Robin: Breakpoint detection



4

Microarray technology in its principle
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Plotting the ratio along the chromosome
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CGH profile. Because of the technical variability, the observed data look like this:

1.57 1.58 1.59 1.6 1.61 1.62 1.63 1.64 1.65 1.66 1.67

x 10
6

−3

−2

−1

0

1

2

3

genomic position

lo
g 2 r

at

A dot on the graph = log2

{
♯ copies of BAC(t) in the test genome

♯ copies of BAC(t) in the reference genome

}

S. Robin: Breakpoint detection



7

Interpretation of a CGH profile
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1.2 - Model = What we have in mind

• At position t, there exists a ’true’ log-ratio λt, which depends on the relative copy
number.

• The value of the true log-ratio λt is affected by abrupt changes:
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Position t1, t2, .. are called breakpoints. µk is the true log-ratio in segment Ik.

• The observed signal Yt is noisy:

Yt = λt + Et.

Breakpoints detection aims at studying the spatial structure of the signal.
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Statistical model

• The breakpoints define a partition of the data into K segments of size nk:

Ik = {t, t ∈]tk−1, tk]}.

• Suppose that those parameters are constant between two changes:

if position t is in segment Ik, Yt = µk + Et ∼ N (µk, σ
2
(k)).

• The parameters of this model are:

T = (t1, ..., tK−1), Θ = (θ1, . . . , θK), θk = (µk, σ
2
(k)).

• The model can rewritten as a regression model:

Y = Tµ + E

where T = unknown n × K segmentation matrix (Ytk = I{i ∈ Ik}),
µ = vector of the K segment means.

S. Robin: Breakpoint detection
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Estimating the parameters

Log-Likelihood (with a constant variance σ2):

2LK(T, Θ) = 2

K∑

k=1

log φ({Yt}t∈Ik
; θk) = 2

K∑

k=1

∑

t∈Ik

log φ(Yt; θk)

= −n log σ2 −
1

σ2

K∑

k=1

∑

t∈Ik

(Yt − µk)
2 + cst.

• Because the data are supposed to be independent, the log-likelihood is a sum over all
the segments (additive contrast).

• Because the data are supposed to be Gaussian, maximum likelihood estimation is
equivalent to least squares fitting.

• When the segments are known, estimation is straightforward: µ̂k = 1
nk

∑
t∈Ik

Yt.
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How to find the breakpoints?

When K is known , we have to minimise

Jk(1, n) =
K∑

k=1

∑

t∈Ik

(Yt − µ̂k)
2.

• There are

(
n − 1
K − 1

)
possible choices for the positions of the breakpoints

t1, t2, . . . , tK−1:

⇒ Impossible to explore for large n and K

•
∑

t∈Ik
(Yt − µ̂k)

2 can be viewed as the ’cost’ of segment Ik, i.e. the cost of putting
data Ytk−1+1 to Ytk+1

in a single segment.

• The optimisation problem is actually a shortest path problem that can be solved thanks
to dynamic programming.
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Dynamic programming. Based on Bellmann’s optimality principle:

Sub-paths of the optimal path are themselves optimal.

Initialisation: For 0 ≤ i < j ≤ n:

J1(i, j) =

j∑

t=i+1

(Yt − µ̂)2.

Step k: For 2 ≤ k ≤ K:

Jk(i, j) = min
i≤h≤j

[Jk−1(1, h) + J1(h + 1, j)] .

Jk is called the cost matrix.

The global optimum is given by Jk(1, n).
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Example with R

Cost matrix:
lmin = 2

C = matrix(Inf, n, n)

for (i in (1:(n-lmin)))

{

for (j in ((i+lmin):n))

{

reg = lm(y[i:j] ~ x[i:j])

C[i, j] = sum(reg$residuals^2)

}

}

Breakpoints:
$t.est

[,1] [,2] [,3] [,4] [,5]

[1,] 40 0 0 0 0

[2,] 10 40 0 0 0

[3,] 16 30 40 0 0

[4,] 10 16 30 40 0

[5,] 10 16 24 30 40

Contrasts:

$J.est

[1] 23.8693554 9.8660559 2.6290695 1.5546431 1.2213389
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One last problem: the selection of K

• The contrast JK necessarily
decreases when the model
becomes more complex.

• The penalty function measures
this complexity: pen(K) = K +1
with constant variance, 2K with
heterogeneous variance.

• We look for the minimum of

Jk + βpen(K)

where β is adaptively estimated
(Lavielle(2003)).

Chapter 4. Pro
ess segmentation
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Figure 4.1: Illustration of the model sele
tion pro
edure proposed by Lavielle(2005). Cir
les represent the 
onvex hull of 
ontrast . The verti
al line indi
atesthe number of segments for whi
h the 
ontrast 
eases to de
rease signi�
antly.4.4 Bayesian formulation of the multiple 
hange-point problemIn order to 
omplete this review on segmentation methods, we present anothermodelling strategy that has been 
onsidered for this problem, in the Bayesianframework. See Green (1995), Carlin (1992), Barry and Hartigan (1993), Av-ery and Henderson (1999), Lavielle and Lebarbier (2001) for instan
e. Previousse
tions were dedi
ated to strategies whose obje
tive is to provide the best seg-mentation on the data, based on a spe
i�
 
riterion. The obje
tive is di�erent inthe Bayesian setting, where the number of segments as well as their position israndom. As a 
onsequen
e, their posterior distribution will be used to 
hoose themost appropriate number of segments, and will provide lo
al information regard-ing the position of the breakpoints.The model 
an be spe
i�ed as follows. Let be a real pro
ess su
h thatwhere is a sequen
e of zero-mean random variables. The fun
tion to bere
overed is supposed pie
ewise 
onstant. With the 
onventional notations:
39
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1.3 - Example of segmentation on array CGH data

Are the variances σ2
k homogeneous? BT474 cell line, chromosome 9:

Homogeneous variances Heterogeneous variances
K = 4 segments
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Adaptive choice of the number of segments. BT474 cell line, chromosome 1:

Homogeneous variances Heterogeneous variances

K̂ = 10 segments K̂ = 2 segments
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Homogeneous variances result in smaller segments. Picard & al, 05
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Comparative study

Lai & al. (Bioinformatics, 05). On both synthetic and real data (GBM brain tumor data),
the methods performs well.

S. Robin: Breakpoint detection



18

2 - Breakpoint detection with covariates

2.1 - Harvest data

Data = Harvest dates
and temperatures in Ouges
(Burgundy) since 1882. Chuine,
04

A breakpoint is detected in both
series in 1986.

Is the 1986 breakpoint observed
in harvest data caused by the
corresponding rupture in the
temperatures,
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2.2 - Regression / segmentation model

Denote Yt = harvest date at year t,
xt = temperature at year t,
Ik = k-th segment (Ik = {t, t ∈]tk−1, tk]}).

The model is, for t ∈ Ik,

Yt = bxt︸︷︷︸
regression

+ µk︸︷︷︸
segmentation

+ Et

Matrix form. The model can be written as

Y + Xθ + Tµ + E

where X = known matrix of regressors (vector of temperatures),
θ = vector of regression coefficients (θ = [b]),
T = unknown segmentation matrix (Ytk = I{i ∈ Ik}),
µ = vector of segment means.
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Heuristic estimation procedure

Least squares criterion. We look for

min
b,{Ik},{µk}

∑

k

∑

t∈Ik

(Yt − bxt − µk)
2,

which is not additive, since b is common to all segments.

Iterative heuristic. Set F 0
t = Yt and iterate until convergence of bh, {Ih

k}, {µ
h
k}:

1. Segmentation step:

min
{Ik},{µk}

∑

k

∑

t∈Ik

(F h
t − µk)

2, −→ for t ∈ ih+1
k : Gh+1

t = Yt − µh+1
k ;

2. Regression step:

min
b

∑

k

∑

t∈Ik

(Gh+1
t − bxt)

2, −→ F h+1
t = Yt − bh+1xt.

S. Robin: Breakpoint detection



21

Results When accounting for temperature, the breakpoint at t = 1986 vanishes.

Scatter plot + Segments Contrast

Segmentation
for harvest dates

K = 4 (2, 6?)

Segmentation
for temperatures

K = 4 (2?)

Segmentation /
regression for
harvest dates

K = 3 (1?)
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3 - Multiple segmentation

3.1 - Examples

Breakpoints in temperature series

Consider the temperatures series {Yit} in several French cities (i = 1..m), we look for
common breakpoints in the climate slope b accounting for a (random) city effect Ui:

t ∈ Ik ⇒ Yit = µ + Ui + bkt + Eit

where {Ui} are i.i.d. N (0, γ2) and {Eit} are i.i.d. N (0, σ2).

This model induces a correlation between all temperatures collected in the same city:

Cov(Yit, Yi,t′) = γ2 ⇒ Corr(Yit, Yi,t′) =
γ2

γ2 + σ2
.

S. Robin: Breakpoint detection
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Chromosomal aberrations in a set of patients

Consider the CGH profiles {Yit} of a
set of patients (i = 1..m), we look for
individual breakpoints accounting for a
(random) probe effect Ut:

t ∈ Iik ⇒ Yit = µik + Ut + Eit.

Ut accounts for different probe affinities
that may alter all the profiles at the
same position.

The random term induces a correlation
between all these measurements.

S. Robin: Breakpoint detection
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3.2 - Mixed linear model with breakpoints

The general formulation of the model is

Y = Tµ + ZU + E

where

Y: profiles,

T segments (unknown → to estimate),

µ mean signal in each segment (unknown → to estimate),

Z design matrix of the random effect,

U vector of random effect (unobserved): U ∼ N (0,G) (G unknown → to estimate),

E residual (unobserved): U ∼ N (0,R) (R diagonal, unknown → to estimate).

S. Robin: Breakpoint detection



25

Estimation of the parameters

Direct maximisation of the likelihood. The marginal distribution of Y is

Y ∼ N (Xθ + Tµ,V), where V = ZGZ
′ + R.

Because, V is not diagonal, the direct maximisation of the observed log-likelihood L(Y)
leads to the minimisation of a non additive contrast.

Dynamic programming can not be used to estimate T and µ

E-M strategy. Its conditional distribution given U is

(Y | U) ∼ N (Xθ + Tµ + ZU,R).

In the E-M algorithm (Foulley, lecture notes), the unobserved effect U is predicted, so
we have to maximise L(Y | U), which involves an additive contrast since R is diagonal.

Dynamic programming can be used to estimate T and µ

S. Robin: Breakpoint detection
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A DP-EM algorithm

E step. Calculate the conditional moments of the random effect given the data:

Ê(U|Y), V̂(U|Y).

M step. Denoting Û = Ê(U|Y) , perform the segmentation as follows:

T̂µ = arg min
Tµ

‖Y − Tµ − ZÛ‖2.

A two-stage dynamic programming is required to achieve this step for numerous patients.
Picard et al.

Segclust package.

http://cran.r-project.org/web/packages/segclust/index.html
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3.3 - Applications

Breakpoints in temperature series

Data. For several locations (m =
25), we measure the minimal
daily temperature, averaged for
each year from 1957 to 2004.
(Source: Meteo France).

Model. t ∈ Ik

⇒ Yit = µ + Ui + bkt + Eit.

Estimates.

b̂1 = 1.8 10−3,

b̂2 = 2.5 10−2,
γ̂ = 2.0, σ̂ = 0.51.
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CGH profile: Bladder cancer data

Global analysis (Inst. Curie, F.
Radvanyi)

We find a large positive random
effect Ut has at position 87.

→ Poor probe affinity?
→ Wrong annotation?
→ Polymorphism?
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Individual profiles. The random
effect has an influence on the
segmentation.

• Breakpoints around position
86 are detected in individual
profiles when analysed
independently (–).

• They vanish after correction of
the probe effect vanish (–).
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